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Abstract
We present a relativistic formulation of the optimized effective potential method (ROEP) and its
implementation within the Korringa–Kohn–Rostoker multiple scattering formalism. The
scheme is an all-electron approach, treating core and band states formally on the same footing.
We use exact exchange (EXX) as an approximation to the exchange correlation functional.
Numerical four-component wavefunctions for the description of core and valence electrons and
the corresponding ingredients of the ROEP integral equation are employed. The exact exchange
expression for the valence states is reformulated in terms of the electronic Green’s function that
in turn is evaluated by making use of multiple scattering formalism. We present and discuss the
application of the formalism to non-magnetic alkali metals.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years density functional theory (DFT) [1, 2] as
the most popular and versatile theory used in describing the
electronic structure of solids has been continuously developed.
Its success hinges on the approximation to the exchange–
correlation functional. In tailoring appropriate functionals,
recently, so-called orbital functionals on the level of exact
exchange (EXX) are studied intensively [3–10]. Using orbital
functionals requires the use of the optimized potential (OPM)
method to calculate the effective potential (for that reason the
term ‘optimized effective potential (OEP)’ is synonymously
used in the literature). The starting point of this development
was a non-relativistic formulation [11] which was later
extended to a spin-polarized [12] and relativistic, albeit non-
spin-polarized, form [13, 14]. Here we use a recent extension
of this approach [10] to a relativistic formulation, being able to
take spin polarization into account.

In this work we treat the electronic structure problem
of the solid using the spin-polarized relativistic Korringa–
Kohn–Rostoker (KKR) multiple scattering formalism [15]. For
the exchange–correlation contribution we employ the exact
exchange approximation. Treatment of the core states uses the
approach for atoms given in [10] with an appropriate treatment

of the boundary problem. The mentioned approach is also used
to treat the free atom case allowing for checks and comparison.
Valence states are treated using multiple scattering theory.
Earlier work in the non-relativistic context using LMTO [3]
or KKR [4], respectively, employed numerical variations of
the exchange energy functional with respect to the density.
In contrast, we here perform the variations analytically and
determine explicitly the involved functional derivatives.

At the moment pseudo-potentials are frequently used in
OEP studies [9, 16, 17] when solving the electronic structure
problem, and their reliability has been disputed [18]. In
contrast, we here make use of an all-electron approach, treating
core and valence electrons on the same footing. Further,
when constructing the Green’s function we avoid the so-
called sum over states approach, whose application leads
to problems, especially when having in mind inclusion of
correlation effects [19].

This paper is organized as follows—first, we present the
ROEP equations, treating core and valence states formally on
the same footing. Then we give details on the calculation of
simple metals. Finally, we present results and compare the
resulting exchange potentials for the solid to corresponding
exchange potentials obtained from free atom calculations.
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2. Theory

The starting point is the Dirac equation within relativistic
Kohn–Sham (KS) spin-DFT (see, e.g., [20]):[

−icα ·∇ + c2

2
β + VKS(r)

]
φk(r) = εk φk(r), (1)

where k specifies a set of quantum numbers for either core (c)
or band (v) states. The single-particle orbitals are expanded
in terms of relativistic spin-angular functions labeled by a
combined index � = (κ, μ), with κ and μ being the spin–orbit
and magnetic quantum numbers (more details of the coupling
scheme used can be found in [15]). When restricting to a
magnetic field in the z direction and a magnetization density
collinear to the magnetic field we have

VKS(r) = V̄KS(r) + β�z Bxc(r) (2)

= Vext(r) + VH(r) + V̄xc(r) + β�z Bxc(r), (3)

where the spin-averaged (V̄xc) and spin-dependent exchange–
correlation (Bxc) potentials are given as functional derivatives
of Exc:

V̄xc(r) = δExc[n, m]
δn(r)

Bxc(r) = δExc[n, m]
δm(r)

(4)

with respect to the electron density and spin magnetization,
respectively, given by

n(r) = 1
2

occ∑
k

φ
†
k (r)φk(r) + c.c. (5)

m(r) = 1
2

occ∑
k

φ
†
k (r)β�zφk(r) + c.c. (6)

The relativistic optimized effective potentials are given as the
solution of the ROEP integral equation:

∫
d3r ′

(
V̄xc(r′)
Bxc(r′)

)T

χ(r′, r) =
(

IV(r)
IB(r)

)T

. (7)

In the following we give details of the evaluation of the
inhomogeneities and the static non-interacting Kohn–Sham
response function χ needed to invert the latter equation. Both
inhomogeneities and response are partitioned into core and
valence contributions.

The response is given by the sum of core (c) and valence
(v) contributions, respectively:

χ(r, r′) = χ(c)(r, r′) + χ(v)(r, r′). (8)

Partitioning the expression for the exchange–correlation
energy results into four terms associated with core–core (cc),
core–valence (cv), valence–core (vc) and valence–valence (vv)
contributions:

Exc = E (cc)
xc + E (cv)

xc + E (vc)
xc + E (vv)

xc . (9)

The inhomogeneities IV and IB of equation (7) have to be
formulated accordingly using expressions for core and band
states, respectively. In what follows we use exact exchange
(EXX, Ex ) as an approximation to the exchange–correlation
functional and give the terms needed for solving equation (7)
according to the partitioning given in equations (8) and (9).

2.1. Core–core contributions

We here derive the expressions along the lines of the
formalism [10] developed for the free atom case.

Using the chain rule for functional derivatives the
inhomogeneities are obtained as

I (cc)
V (r) =

∫
d3r ′ ∑

k

δφ
†
k (r

′)
δV̄KS(r)

δEcc
x [n, m]

δφ
†
k (r

′)
+ c.c. (10)

I (cc)
B (r) =

∫
d3r ′ ∑

k

δφ
†
k (r

′)
δBxc(r)

δEcc
x [n, m]

δφ
†
k (r′)

+ c.c. (11)

Given the EXX expression for Ex

Ex = −
occ∑
k l

∫
d3r

∫
d3r ′ φ

†
k (r) φl(r) φ

†
l (r ′) φk(r ′)

|r − r ′| (12)

as an explicit functional of the spinor–orbitals these can be
readily determined. The variations of the orbitals with respect
to changes in the KS potentials are obtained from first-order
perturbation theory as

δφ
†
k (r

′)
δV̄KS(r)

= φ
†
k (r)G(c)

k (r, r′)

δφ
†
k (r

′)
δBxc(r)

= φ
†
k (r)β�z G(c)

k (r, r′).

(13)

Here G(c)
k is the orthogonal Green’s function whose

construction in the relativistic case is much more involved than
in the non-relativistic case and is given in [10, 21]

Using the operators Oν ∈ {I4, β�z}, where ν =
n, m denotes the association with the charge density and
magnetization, respectively, the static KS response functions
can be written as a sum over occupied core states:

χ(c)
μν (r′, r) =

occ∑
k

φ
†
k (r

′)OμG(c)
k (r′, r)Oνφk(r). (14)

2.2. Valence–valence contributions

The valence properties of the paramagnetic ground state are
represented within the relativistic KKR method by the multiple
scattering Green’s function [22]:

G(v)(r, r′, E) =
∑
��′

Z n
�(r, E)τ nn′

��′ Z n′×
�′ (r′, E)

−
∑
�

[
Z n

�(r, E)J n×
� (r′, E)�(r ′ − r)

+ J n
�(r, E)Z n×

� (r′, E)�(r − r ′)
]
δnn′, (15)

where Z n
� and J n

� are four-component wavefunctions, being
regular and irregular solutions, respectively, of the single-site
Dirac equation at a site n, and τ nn′

��′ is the scattering path
operator subsuming the multiple scattering events in the solid.
Using G(v) the relativistic exact exchange functional can be
written as

E (vv)
x [n] = − 1

π2

∫
d3r

∫
d3r ′

× Tr
[
Im

∫
dEG(v)(r, r′, E)

] [
Im

∫
dE ′G(v)(r′, r, E ′)

]
|r − r′| , (16)

2



J. Phys.: Condens. Matter 21 (2009) 064208 D Ködderitzsch et al

Figure 1. (Spin-averaged) exchange potentials for alkali metals in the solid state and their free atom counterparts calculated using the
spin-polarized (in the case of atoms) relativistic optimized effective potential method. Note that the exchange potentials for the solid extend to
the WS radius only. The exchange potentials for the solid have been shifted in energy and aligned with those from the atom to allow
comparison. The insets shown for Rb and Cs show an enlarged part of the valence region.

where use has been made of the expression for the density
matrix n(v)(r, r′) in terms of G(v):

n(v)(r, r′) = − 1

π
Im

∫
dE G(v)(r, r′, E). (17)

To determine the contribution of the valence states to the
inhomogeneity in equation (7), equation (16) is varied with
respect to V̄KS(r) which gives

I (vv)
V (r) = δE (vv)

x

δV̄KS(r)

= − 2

π2

∫
d3r ′

∫
d3r ′′

{
Tr

[
Im

∫
dE G(v)(r′, r′′, E)

]

×
[

Im
∫

dE ′G(v)(r′′, r, E ′)G(v)(r, r′, E ′)
]}

{|r′−r′′|}−1.

(18)

The contribution of the valence states to the response function
is determined using G(v) as [23, 24]

χ(v)(r, r′) = − Tr
∫

dE G(v)(r, r′, E)G(v)(r′, r, E). (19)

2.3. Valence–core contributions

The inhomogeneities I (vc)
V and I (cv)

V are obtained by adopting
equation (16), replacing the appropriate parts by the core
density matrix n(c)(r, r′) and varying with respect to V̄KS(r).

More details on the analytical treatment of the functional
variation of Ex in terms of the Green’s function for the valence
states will be published elsewhere [25].

3. Details of the calculation

The effective potentials as a solution of the ROPM equation (7)
are obtained by a discretization of the inhomogeneities and
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the response function on real space meshes and subsequent
matrix inversion. Choosing the effective potentials to be
spherically symmetric, corresponding spherically averaged
inhomogeneities and response functions are used in the
procedure.

For the atomic calculation the range of the radial mesh
depends on the system and is chosen such that numerical
stability as well as high accuracy of the result is guaranteed.
The meshes in this case typically extend to about 30–50 au.
Outer boundary conditions are imposed using the procedure
given in [10], by using a spin-projected representation of the
potentials and using the exact result for r → ∞.

Determining the effective potentials for the solid, the
computationally most demanding part is the evaluation of
the Coulomb integrals in equation (18) on a double energy
mesh (E, E ′). In contrast to a former KKR implementation,
where the variations are computed numerically we do the
variation in equation (18) analytically. As done in a previous
non-relativistic implementation of the OPM by means of the
KKR [4] the energy integration is done on a complex energy
path.

We use the atomic sphere approximation (ASA) and the
inversion is done on an exponential radial mesh spanning the
Wigner–Seitz (WS) radius. The boundary condition at the WS
radius is chosen as in [4] and we obtain the δ-like feature of
Vx , as reported there.

For the non-magnetic metals Li, Na, K, Rb and Cs we
used lattice constants of 6.63, 8.11, 9.87, 10.55 and 11.61 au,
respectively. The structure has been assumed to be body-
centered cubic (bcc) for all metals considered here.

4. Results and discussion

In figure 1 the exchange potentials for the stable elemental
alkali metals are shown. In addition, to allow comparison, the
spin-averaged exchange potentials of the corresponding free
atoms are plotted (note that the free atoms are magnetic and,
further, that for the solid the exchange potentials extend to
the WS radius only). All of them show a pronounced shell
structure. As expected, especially for the elements with high
atomic number the exchange potentials for the atoms and their
solid counterpart are very similar in the nuclear near regime.
As a result of the different boundary condition systematic
changes in the valence regions are visible.

For the open-shell free atoms the exchange fields Bx are
shown in figure 2. They have a generic structure showing
the typical bump of the outer s electron and are non-vanishing
near the nucleus (as opposed to exchange fields obtained in the
local density approximation). With increasing atomic number
the exchange fields show a fine structure near the nucleus
associated with the shell structure of the atom.

In summary, we have devised a relativistic optimized
effective potential method implemented in KKR multiple
scattering theory. Core and valence electrons are treated on
the same footing in an all-electron approach. Results for non-
magnetic alkali metals demonstrate the future potential of this
approach. Ongoing work is devoted to the application of this
formalism to magnetic solids and the inclusion of correlations.

Figure 2. Spin-dependent exchange potentials for free open-shell
alkali atoms calculated using the spin-polarized relativistic optimized
effective potential method.
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